UV inactivation of Semliki Forest virus and E. coli bacteria by alternative light sources
The quick spreading of the SARS-CoV-2 virus, initiating the global pandemic with a significant impact on economics and health, highlighted an urgent need for effective and sustainable restriction mechanisms of pathogenic microorganisms. UV-C radiation, causing inactivation of many viruses and bacter...
Gespeichert in:
Veröffentlicht in: | Journal of photochemistry and photobiology 2022-06, Vol.10, p.100120-100120 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quick spreading of the SARS-CoV-2 virus, initiating the global pandemic with a significant impact on economics and health, highlighted an urgent need for effective and sustainable restriction mechanisms of pathogenic microorganisms. UV-C radiation, causing inactivation of many viruses and bacteria, is one of the tools for disinfection of different surfaces, liquids, and air; however, mainly mercury 254 nm line is commonly used for it. In this paper, we report our results of the experiments with newly elaborated special type polychromatic non-mercury UV light sources, having spectral lines in the spectral region from 190 nm to 280 nm. Inactivation tests were performed with both
(
) bacteria and Semliki Forest virus (SFV) as a representative of human enveloped RNA viruses. In addition, the effect of prepared lamps on virus samples in liquid and dry form (dried virus-containing solution) was tested. Reduction of 4 log10 of
was obtained after 10 min of irradiation with both thallium-antimony and arsenic high-frequency electrodeless lamps. High reduction results for the arsenic light source demonstrated sensitivity of
to wavelengths below 230 nm, including spectral lines around 200 nm. For the Semliki Forest virus, the thallium-antimony light source showed virus inactivation efficiency with a high virus reduction rate in the range of 3.10 to > 4.99 log10 within 5 min of exposure. Thus, the new thallium-antimony light source showed the most promising disinfection effect in bacteria and viruses, and arsenic light sources for bacteria inactivation, opening doors for many applications in disinfection systems, including for pathogenic human RNA viruses. |
---|---|
ISSN: | 2666-4690 2666-4690 |
DOI: | 10.1016/j.jpap.2022.100120 |