Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications

In this article, we introduce anisotropic mixed-norm Herz spaces and and investigate some basic properties of those spaces. Furthermore, we establish the Rubio de Francia extrapolation theory, which resolves the boundedness problems of Calderón-Zygmund operators and fractional integral operator and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2023-09, Vol.21 (1), p.1-32
Hauptverfasser: Zhao, Yichun, Zhou, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we introduce anisotropic mixed-norm Herz spaces and and investigate some basic properties of those spaces. Furthermore, we establish the Rubio de Francia extrapolation theory, which resolves the boundedness problems of Calderón-Zygmund operators and fractional integral operator and their commutators, on spaces and . Especially, the Littlewood-Paley characterizations of anisotropic mixed-norm Herz spaces are also gained. As the generalization of anisotropic mixed-norm Herz spaces, we introduce anisotropic mixed-norm Herz-Hardy spaces and , on which atomic decomposition and molecular decomposition are obtained. Moreover, we gain the boundedness of classical Calderón-Zygmund operators.
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2022-0599