Low-Resolution Precoding for Multi-Antenna Downlink Channels and OFDM

Downlink precoding is considered for multi-path multi-input single-output channels where the base station uses orthogonal frequency-division multiplexing and low-resolution signaling. A quantized coordinate minimization (QCM) algorithm is proposed and its performance is compared to other precoding a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2022-04, Vol.24 (4), p.504
Hauptverfasser: Nedelcu, Andrei Stefan, Steiner, Fabian, Kramer, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Downlink precoding is considered for multi-path multi-input single-output channels where the base station uses orthogonal frequency-division multiplexing and low-resolution signaling. A quantized coordinate minimization (QCM) algorithm is proposed and its performance is compared to other precoding algorithms including squared infinity-norm relaxation (SQUID), multi-antenna greedy iterative quantization (MAGIQ), and maximum safety margin precoding. MAGIQ and QCM achieve the highest information rates and QCM has the lowest complexity measured in the number of multiplications. The information rates are computed for pilot-aided channel estimation and a blind detector that performs joint data and channel estimation. Bit error rates for a 5G low-density parity-check code confirm the information-theoretic calculations. Simulations with imperfect channel knowledge at the transmitter show that the performance of QCM and SQUID degrades in a similar fashion as zero-forcing precoding with high resolution quantizers.
ISSN:1099-4300
1099-4300
DOI:10.3390/e24040504