Propositional Dynamic Logic with Converse and Repeat for Message-Passing Systems
The model checking problem for propositional dynamic logic (PDL) over message sequence charts (MSCs) and communicating finite state machines (CFMs) asks, given a channel bound $B$, a PDL formula $\varphi$ and a CFM $\mathcal{C}$, whether every existentially $B$-bounded MSC $M$ accepted by $\mathcal{...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2013-06, Vol.9, Issue 2 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The model checking problem for propositional dynamic logic (PDL) over message
sequence charts (MSCs) and communicating finite state machines (CFMs) asks,
given a channel bound $B$, a PDL formula $\varphi$ and a CFM $\mathcal{C}$,
whether every existentially $B$-bounded MSC $M$ accepted by $\mathcal{C}$
satisfies $\varphi$. Recently, it was shown that this problem is
PSPACE-complete.
In the present work, we consider CRPDL over MSCs which is PDL equipped with
the operators converse and repeat. The former enables one to walk back and
forth within an MSC using a single path expression whereas the latter allows to
express that a path expression can be repeated infinitely often. To solve the
model checking problem for this logic, we define message sequence chart
automata (MSCAs) which are multi-way alternating parity automata walking on
MSCs. By exploiting a new concept called concatenation states, we are able to
inductively construct, for every CRPDL formula $\varphi$, an MSCA precisely
accepting the set of models of $\varphi$. As a result, we obtain that the model
checking problem for CRPDL and CFMs is still in PSPACE. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-9(2:12)2013 |