Multi-Objective Parameter Selection for Classifers

Setting the free parameters of classifiers to different values can have a profound impact on their performance. For some methods, specialized tuning algorithms have been developed. These approaches mostly tune parameters according to a single criterion, such as the cross-validation error. However, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software 2012-01, Vol.46 (5)
Hauptverfasser: Christoph Mussel, Ludwig Lausser, Markus Maucher, Hans A. Kestler
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Setting the free parameters of classifiers to different values can have a profound impact on their performance. For some methods, specialized tuning algorithms have been developed. These approaches mostly tune parameters according to a single criterion, such as the cross-validation error. However, it is sometimes desirable to obtain parameter values that optimize several concurrent - often conflicting - criteria. The TunePareto package provides a general and highly customizable framework to select optimal parameters for classifiers according to multiple objectives. Several strategies for sampling andoptimizing parameters are supplied. The algorithm determines a set of Pareto-optimal parameter configuration and leaves the ultimate decision on the weighting of objectives to the researcher. Decision support is provided by novel visualization techniques.
ISSN:1548-7660
1548-7660