Metasurface-stabilized optical microcavities

Cavities concentrate light and enhance its interaction with matter. Confining to microscopic volumes is necessary for many applications but space constraints in such cavities limit the design freedom. Here we demonstrate stable optical microcavities by counteracting the phase evolution of the cavity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-02, Vol.14 (1), p.1114-1114, Article 1114
Hauptverfasser: Ossiander, Marcus, Meretska, Maryna Leonidivna, Rourke, Sarah, Spägele, Christina, Yin, Xinghui, Benea-Chelmus, Ileana-Cristina, Capasso, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cavities concentrate light and enhance its interaction with matter. Confining to microscopic volumes is necessary for many applications but space constraints in such cavities limit the design freedom. Here we demonstrate stable optical microcavities by counteracting the phase evolution of the cavity modes using an amorphous Silicon metasurface as cavity end mirror. Careful design allows us to limit the metasurface scattering losses at telecom wavelengths to less than 2% and using a distributed Bragg reflector as metasurface substrate ensures high reflectivity. Our demonstration experimentally achieves telecom-wavelength microcavities with quality factors of up to 4600, spectral resonance linewidths below 0.4 nm, and mode volumes below 2.7 λ 3 . The method introduces freedom to stabilize modes with arbitrary transverse intensity profiles and to design cavity-enhanced hologram modes. Our approach introduces the nanoscopic light control capabilities of dielectric metasurfaces to cavity electrodynamics and is industrially scalable using semiconductor manufacturing processes. Microcavities concentrate light in tiny volumes and are important, e.g., for semiconductor lasers and nonlinear optics. In this paper, metasurfaces are introduced to realize microcavities with arbitrary mode profiles.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-36873-7