Depth and phase of respiration modulate cortico-muscular communication

Recent studies in animals have convincingly demonstrated that respiration cyclically modulates oscillatory neural activity across diverse brain areas. To what extent this generalises to humans in a way that is relevant for behaviour is yet unclear. We used magnetoencephalography (MEG) to assess the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2020-11, Vol.222, p.117272-117272, Article 117272
Hauptverfasser: Kluger, Daniel S., Gross, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies in animals have convincingly demonstrated that respiration cyclically modulates oscillatory neural activity across diverse brain areas. To what extent this generalises to humans in a way that is relevant for behaviour is yet unclear. We used magnetoencephalography (MEG) to assess the potential influence of respiration depth and respiration phase on the human motor system. We obtained simultaneous recordings of brain activity, muscle activity, and respiration while participants performed a steady contraction task. We used corticomuscular coherence as a measure of efficient long-range cortico-peripheral communication. We found coherence within the beta range over sensorimotor cortex to be reduced during voluntary deep compared to involuntary normal breathing. Moreover, beta coherence was found to be cyclically modulated by respiration phase in both conditions. Overall, these results demonstrate how respiratory rhythms influence the synchrony of brain oscillations, conceivably regulating computational efficiency through neural excitability. Intriguing questions remain with regard to the shape of these modulatory processes and how they influence perception, cognition, and behaviour.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2020.117272