Efficient long-range conduction in cable bacteria through nickel protein wires

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-06, Vol.12 (1), p.3996-3996, Article 3996
Hauptverfasser: Boschker, Henricus T. S., Cook, Perran L. M., Polerecky, Lubos, Eachambadi, Raghavendran Thiruvallur, Lozano, Helena, Hidalgo-Martinez, Silvia, Khalenkow, Dmitry, Spampinato, Valentina, Claes, Nathalie, Kundu, Paromita, Wang, Da, Bals, Sara, Sand, Karina K., Cavezza, Francesca, Hauffman, Tom, Bjerg, Jesper Tataru, Skirtach, Andre G., Kochan, Kamila, McKee, Merrilyn, Wood, Bayden, Bedolla, Diana, Gianoncelli, Alessandra, Geerlings, Nicole M. J., Van Gerven, Nani, Remaut, Han, Geelhoed, Jeanine S., Millan-Solsona, Ruben, Fumagalli, Laura, Nielsen, Lars Peter, Franquet, Alexis, Manca, Jean V., Gomila, Gabriel, Meysman, Filip J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. Filamentous cable bacteria conduct electrical currents over centimeter distances through fibers embedded in their cell envelope. Here, Boschker et al. show that the fibers consist of a conductive core containing nickel proteins that is surrounded by an insulating protein shell.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24312-4