Synthesis, characterization and evaluation of biological properties of selenium nanoparticles from Solanum lycopersicum

Synthesis of nanoparticles by green synthesis has a large number of biomedical applications worldwide. In this study, Selenium Nanoparticles (SeNPs) were synthesized by using sodium salt of selenium and Solanum lycopersicum (tomato) fruit juice and seeds extract. The plant extracts were used as a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of chemistry 2022-07, Vol.15 (7), p.103901, Article 103901
Hauptverfasser: Sani-e-Zahra, Iqbal, Muhammad Shahid, Abbas, Khizar, Qadir, Muhammad Imran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis of nanoparticles by green synthesis has a large number of biomedical applications worldwide. In this study, Selenium Nanoparticles (SeNPs) were synthesized by using sodium salt of selenium and Solanum lycopersicum (tomato) fruit juice and seeds extract. The plant extracts were used as a reducing agent in ratio 1:4 i.e. sodium selenite salt (Na2SeO3). SeNPs were characterized by UV–visible spectrophotometry, FTIR and Zeta Sizer analysis. The UV-graphs indicated the highest peak of absorbance at 350 nm. Whereas, FTIR analysis of SeNPs indicated absorbance bands at 3262.35–1633.72 cm−1. Zeta sizer analysis showed the average size of SeNPs for Fruit juice extract as 1020 d.nm. with PDI 0.432. In case of seeds extract, average size was 1155 d.nm. with PDI 0.761; and the PDI value for both extracts showed polyderse nature of these NPs. SeNPs possessed significant antimicrobial activity against selected strains of E. coli, S. aureus, M. luteus, S. enterica, B. subtilis, K. pneumoniae and P. aureginosa. The α-amylase inhibitory assay of these SeNPs indicated that they had antidiabetic role with IC50 value 24.4642 µg/mL. The DPPH assay showed that SeNPs of Solanum lycopersicum have antioxidant activity with IC50 value of 20.7398 µg/mL.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2022.103901