Buzzing through Data: Advancing Bee Species Identification with Machine Learning
Given the vast diversity of bee species and the limited availability of taxonomy experts, bee species identification has become increasingly important, especially with the rise of apiculture practice. This review systematically explores the application of machine learning (ML) techniques in bee spec...
Gespeichert in:
Veröffentlicht in: | Applied system innovation 2024-08, Vol.7 (4), p.62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the vast diversity of bee species and the limited availability of taxonomy experts, bee species identification has become increasingly important, especially with the rise of apiculture practice. This review systematically explores the application of machine learning (ML) techniques in bee species determination, shedding light on the transformative potential of ML in entomology. Conducting a keyword-based search in the Scopus and Web of Science databases with manual screening resulted in 26 relevant publications. Focusing on shallow and deep learning studies, our analysis reveals a significant inclination towards deep learning, particularly post-2020, underscoring its ability to handle complex, high-dimensional data for accurate species identification. Most studies have utilized images of stationary bees for the determination task, despite the high computational demands from image processing, with fewer studies utilizing the sound and movement of the bees. This emerging field faces challenges in terms of dataset scarcity with limited geographical coverage. Additionally, research predominantly focuses on honeybees, with stingless bees receiving less attention, despite their economic potential. This review encapsulates the state of ML applications in bee species determination. It also emphasizes the growing research interest and technological advancements, aiming to inspire future explorations that bridge the gap between computational science and biodiversity conservation. |
---|---|
ISSN: | 2571-5577 2571-5577 |
DOI: | 10.3390/asi7040062 |