Herbal drug raw materials differentiation by neural networks using non-metals content
Three-layer artificial neural networks (ANN) capable of recognizing the type of raw material (herbs, leaves, flowers, fruits, roots or barks) using the non-metals (N, P, S, Cl, I, B) contents as inputs were designed. Two different types of feed-forward ANNs — multilayer perceptron (MLP) and radial b...
Gespeichert in:
Veröffentlicht in: | Central European Journal of Chemistry 2010-12, Vol.8 (6), p.1298-1304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-layer artificial neural networks (ANN) capable of recognizing the type of raw material (herbs, leaves, flowers, fruits, roots or barks) using the non-metals (N, P, S, Cl, I, B) contents as inputs were designed. Two different types of feed-forward ANNs — multilayer perceptron (MLP) and radial basis function (RBF), best suited for solving classification problems, were used. Phosphorus, nitrogen, sulfur and boron were significant in recognition; chlorine and iodine did not contribute much to differentiation. A high recognition rate was observed for barks, fruits and herbs, while discrimination of herbs from leaves was less effective. MLP was more effective than RBF. |
---|---|
ISSN: | 1895-1066 2391-5420 1644-3624 2391-5420 |
DOI: | 10.2478/s11532-010-0105-0 |