Light Field Intensification in Optical Films Induced by Intercoupling of Defects and Organic Contamination

Based on the finite-difference time-domain method, light field intensification in optical films due to the intercoupling of defects and organic contamination was analyzed. The results show that the intercoupling between the defect and the organic contamination droplet leads to an increase in the loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2022-02, Vol.13 (3), p.387
Hauptverfasser: Chen, Xin, Ling, Xiu-Lan, Liu, Ji, Liu, Xiao-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the finite-difference time-domain method, light field intensification in optical films due to the intercoupling of defects and organic contamination was analyzed. The results show that the intercoupling between the defect and the organic contamination droplet leads to an increase in the local electric field and the coupling effect enhances with the decreasing distance between the defect and the organic contamination droplet and the increasing diameter of the organic contamination droplet. The coupling effect of the defect and the organic contamination layer depends on not only the thickness of the organic contamination layer but also the refractive index of the organic contamination layer. With the thickness and the refractive index of the organic contamination layer increasing, the peak value of the electric field decreases. This work deepens the physical understanding of the degradation mechanism of laser-induced damage in optical thin films used in vacuum.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13030387