Fast Resolution Enhancement for Real Beam Mapping Using the Parallel Iterative Deconvolution Method
Super-resolution methods for real beam mapping (RBM) imagery play a significant role in many microwave remote sensing applications. However, the existing super-resolution methods require high-dimensional matrix operations in the case of wide-field imaging, which makes it difficult to satisfy the req...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-02, Vol.15 (4), p.1164 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Super-resolution methods for real beam mapping (RBM) imagery play a significant role in many microwave remote sensing applications. However, the existing super-resolution methods require high-dimensional matrix operations in the case of wide-field imaging, which makes it difficult to satisfy the requirements of real-time signal processing. To solve this problem, this paper introduces an improved Poisson distribution-based maximum likelihood (IPML) method by adding an adaptive iterative acceleration factor to effectively improve the algorithm convergence speed without introducing high-dimensional matrix operations. Furthermore, a GPU-based parallel processing architecture is proposed through the multithreading characteristics of the computing platform, and a cooperative CPU–GPU working model is constructed. This can realize the parallel optimization of the echo reception, preprocessing, and super-resolution processing. We verify that the proposed parallel super-resolution method can significantly improve the computational efficiency without sacrificing performance, using a real dataset. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15041164 |