Methylene Blue Dye Photocatalytic Degradation over Synthesised Fe3O4/AC/TiO2 Nano-Catalyst: Degradation and Reusability Studies

In this study, activated carbon (AC) from coconut shell, as a widely available agricultural waste, was synthesised in a simple one-step procedure and used to produce a magnetic Fe3O4/AC/TiO2 nano-catalyst for the degradation of methylene blue (MB) dye under UV light. Scanning electron microscopy rev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-11, Vol.10 (12), p.2360
Hauptverfasser: Moosavi, Seyedehmaryam, Li, Rita Yi Man, Lai, Chin Wei, Yusof, Yusliza, Gan, Sinyee, Akbarzadeh, Omid, Chowhury, Zaira Zaman, Yue, Xiao-Guang, Johan, Mohd RafieBin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, activated carbon (AC) from coconut shell, as a widely available agricultural waste, was synthesised in a simple one-step procedure and used to produce a magnetic Fe3O4/AC/TiO2 nano-catalyst for the degradation of methylene blue (MB) dye under UV light. Scanning electron microscopy revealed that TiO2 nanoparticles, with an average particle size of 45 to 62 nm, covered the surface of the AC porous structure without a reunion of its structure, which according to the TGA results enhanced the stability of the photocatalyst at high temperatures. The photocatalytic activities of synthesised AC, commercial TiO2, Fe3O4/AC, and Fe3O4/AC/TiO2 were compared, with Fe3O4/AC/TiO2 (1:2) exhibiting the highest catalytic activity (98%). Furthermore, evaluation of the recovery and reusability of the photocatalysts after treatment revealed that seven treatment cycles were possible without a significant reduction in the removal efficiency.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10122360