A Study on Lump Solutions to a Generalized Hirota-Satsuma-Ito Equation in (2+1)-Dimensions

The Hirota-Satsuma-Ito equation in (2+1)-dimensions passes the three-soliton test. This paper aims to generalize this equation to a new one which still has abundant interesting solution structures. Based on the Hirota bilinear formulation, a symbolic computation with a new class of Hirota-Satsuma-It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-7
Hauptverfasser: Ma, Wen-Xiu, Khalique, Chaudry Masood, Li, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Hirota-Satsuma-Ito equation in (2+1)-dimensions passes the three-soliton test. This paper aims to generalize this equation to a new one which still has abundant interesting solution structures. Based on the Hirota bilinear formulation, a symbolic computation with a new class of Hirota-Satsuma-Ito type equations involving general second-order derivative terms is conducted to require having lump solutions. Explicit expressions for lump solutions are successfully presented in terms of coefficients in a generalized Hirota-Satsuma-Ito equation. Three-dimensional plots and contour plots of a special presented lump solution are made to shed light on the characteristic of the resulting lump solutions.
ISSN:1076-2787
1099-0526
DOI:10.1155/2018/9059858