PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing
Chronic wounds represent a major challenge to the present healthcare system. In recent decades, many topical therapies have been investigated for the treatment of chronic wounds, including different types of wound dressings, antimicrobial agents, and cell therapy. Platelet-derived growth factor (PDG...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2022-04, Vol.20 (1), p.201-201, Article 201 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chronic wounds represent a major challenge to the present healthcare system. In recent decades, many topical therapies have been investigated for the treatment of chronic wounds, including different types of wound dressings, antimicrobial agents, and cell therapy. Platelet-derived growth factor (PDGF) plays an important role in wound healing and has been approved for treatment of wounds related to diabetes mellitus. However, the high cost and short retention time of PDGF protein have limited its wide application. To overcome this challenge, we designed a PDGF-mimicking peptide by connecting PDGF epitope VRKIEIVRKK and self-assembling motif derived from β-amyloid peptide. The resultant peptide can self-assemble into a fibril-rich network and leads to supramolecular hydrogelation with good stability. The hydrophilic epitope can be exposed on the surface of nanofibrils, which might contribute to the binding and activation of PDGF receptors. The forming hydrogel is able to induce the growth and migration of vascular endothelial cells and promote the formation of vascular branches. In the full-thickness skin wounds of healthy mice, after the application of the hydrogel, the density of neovascularization marked by CD31 was greater than that in the control group on Day 3. Larger collagen deposition and a thicker epidermis were observed on Day 12. These results demonstrate that the hydrogel can stimulate collagen deposition and angiogenesis, enhance skin regeneration, and show an excellent therapeutic effect. Taken together, this work not only provides new insight into the design of bioactive peptides but also offers a promising biomaterial for wound healing. |
---|---|
ISSN: | 1477-3155 1477-3155 |
DOI: | 10.1186/s12951-022-01390-0 |