Transient Analysis of Multiphase Transmission Lines Located above Frequency-Dependent Soils
This paper evaluates the influence of frequency-dependent soil conductivity and permittivity in the transient responses of single- and double-circuit transmission lines including the ground wires subjected to lightning strikes. We use Nakagawa’s approach to compute the ground-return impedance and ad...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-09, Vol.14 (17), p.5252 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper evaluates the influence of frequency-dependent soil conductivity and permittivity in the transient responses of single- and double-circuit transmission lines including the ground wires subjected to lightning strikes. We use Nakagawa’s approach to compute the ground-return impedance and admittance matrices where the frequency-dependent soil is modeled using Alípio and Visacro’s model. We compare some elements of these matrices with those calculated by Carson’s approach which assumes the frequency constant. Results show that a significant difference can be obtained in high resistive soils for these elements in impedance and admittance matrices. Then, we compute the transient responses for single- and double-circuit lines with ground wires located above soils of 500, 1000, 5000, and 10,000 Ω·m considering the frequency constant and frequency-dependent parameters generated for two lightning strikes (subsequent stroke and Gaussian pulse). We demonstrate that the inclusion of frequency dependence of soil results in an expressive reduction of approximately 26.15% and 42.75% in the generated voltage peaks in single- and double-circuit lines located above a high-resistive soil. These results show the impact of the frequency-dependent soils that must be considered for a precise transient analysis in power systems. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14175252 |