Photonic integrated beam delivery for a rubidium 3D magneto-optical trap

Cold atoms are important for precision atomic applications including timekeeping and sensing. The 3D magneto-optical trap (3D-MOT), used to produce cold atoms, will benefit from photonic integration to improve reliability and reduce size, weight, and cost. These traps require the delivery of multipl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-05, Vol.14 (1), p.3080-3080, Article 3080
Hauptverfasser: Isichenko, Andrei, Chauhan, Nitesh, Bose, Debapam, Wang, Jiawei, Kunz, Paul D., Blumenthal, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cold atoms are important for precision atomic applications including timekeeping and sensing. The 3D magneto-optical trap (3D-MOT), used to produce cold atoms, will benefit from photonic integration to improve reliability and reduce size, weight, and cost. These traps require the delivery of multiple, large area, collimated laser beams to an atomic vacuum cell. Yet, to date, beam delivery using an integrated waveguide approach has remained elusive. Here we report the demonstration of a 87 Rb 3D-MOT using a fiber-coupled photonic integrated circuit to deliver all beams to cool and trap > 1 ×10 6 atoms to near 200 μK. The silicon nitride photonic circuit transforms fiber-coupled 780 nm cooling and repump light via waveguides to three mm-width non-diverging free-space cooling and repump beams directly to the rubidium cell. This planar, CMOS foundry-compatible integrated beam delivery is compatible with other components, such as lasers and modulators, promising system-on-chip solutions for cold atom applications. Ultracold atoms are generated in the lab using optical trapping and cooling. Here the authors implement a fiber-coupled photonic integrated circuit for a beam delivery to a three-dimensional magneto-optical trap where greater than 1 million rubidium atoms are cooled near 200 μK.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-38818-6