Ground states for planar axially Schrödinger–Newton system with an exponential critical growth

In this paper, we study the following planar Schrödinger–Newton system: { − Δ u + V ( x ) u + λ ϕ u = f ( x , u ) in  R 2 , Δ ϕ = u 2 in  R 2 , where V , f are axially symmetric about x , V is positive, and f is super-linear at zero and exponential critical at infinity. Using a weaker condition [ f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2020-03, Vol.2020 (1), p.1-13, Article 50
Hauptverfasser: Wang, Wenbo, Li, Quanqing, Li, Yongkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the following planar Schrödinger–Newton system: { − Δ u + V ( x ) u + λ ϕ u = f ( x , u ) in  R 2 , Δ ϕ = u 2 in  R 2 , where V , f are axially symmetric about x , V is positive, and f is super-linear at zero and exponential critical at infinity. Using a weaker condition [ f ( x , u ) u 3 − f ( x , t u ) ( t u ) 3 ] sign ( 1 − t ) + θ V ( x ) | 1 − t 2 | ( t u ) 2 ≥ 0 , ∀ x ∈ R 2 , t > 0 , u ≠ 0 with θ ∈ [ 0 , 1 ) instead of the Nehari type monotonic condition on f ( x , u ) | u | 3 , we obtain a ground state solution of the above problem via variational methods.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-020-01349-w