Ground states for planar axially Schrödinger–Newton system with an exponential critical growth
In this paper, we study the following planar Schrödinger–Newton system: { − Δ u + V ( x ) u + λ ϕ u = f ( x , u ) in R 2 , Δ ϕ = u 2 in R 2 , where V , f are axially symmetric about x , V is positive, and f is super-linear at zero and exponential critical at infinity. Using a weaker condition [ f...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2020-03, Vol.2020 (1), p.1-13, Article 50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the following planar Schrödinger–Newton system:
{
−
Δ
u
+
V
(
x
)
u
+
λ
ϕ
u
=
f
(
x
,
u
)
in
R
2
,
Δ
ϕ
=
u
2
in
R
2
,
where
V
,
f
are axially symmetric about
x
,
V
is positive, and
f
is super-linear at zero and exponential critical at infinity. Using a weaker condition
[
f
(
x
,
u
)
u
3
−
f
(
x
,
t
u
)
(
t
u
)
3
]
sign
(
1
−
t
)
+
θ
V
(
x
)
|
1
−
t
2
|
(
t
u
)
2
≥
0
,
∀
x
∈
R
2
,
t
>
0
,
u
≠
0
with
θ
∈
[
0
,
1
)
instead of the Nehari type monotonic condition on
f
(
x
,
u
)
|
u
|
3
, we obtain a ground state solution of the above problem via variational methods. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-020-01349-w |