Composite Copolymer Beads Incorporating Red Mud for Water Amendment by Adsorption—Oxidation Processes
We face significant environmental pollution problems due to various industries, such as the aluminum industry, which generates large amounts of red mud (RM) waste, or agriculture, in which case the use of pesticides creates huge water pollution problems. In this context, the present study offers a b...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2024-07, Vol.14 (14), p.6386 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We face significant environmental pollution problems due to various industries, such as the aluminum industry, which generates large amounts of red mud (RM) waste, or agriculture, in which case the use of pesticides creates huge water pollution problems. In this context, the present study offers a better perspective to originally solve both environmental issues. Thus, the main target of the study referred to using RM waste as a filler for preparing composite copolymer beads. Thereafter, this can achieve significant removal of water pollutants due to their adsorption/oxidation characteristics. As evidenced by the changes in chemical structure and composition, thermal stability, morphology, and porosity, RM was homogenously incorporated in poly(acrylonitrile-co-acrylic acid) beads prepared by wet phase inversion. The final assessment for the removal of pesticides by adsorption and oxidation processes was proven successful. In this regard, 2,4-dichlorophenoxyacetic acid was chosen as a model pollutant, for which an adsorption capacity of 16.08 mg/g composite beads was achieved. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14146386 |