Heavier- and lighter-load isolated lumbar extension resistance training produce similar strength increases, but different perceptual responses, in healthy males and females

Muscles dominant in type I muscle fibres, such as the lumbar extensors, are often trained using lighter loads and higher repetition ranges. However, literature suggests that similar strength adaptations can be attained by the use of both heavier- (HL) and lighter-load (LL) resistance training across...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2018-11, Vol.6, p.e6001-e6001, Article e6001
Hauptverfasser: Fisher, James P, Stuart, Charlotte, Steele, James, Gentil, Paulo, Giessing, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muscles dominant in type I muscle fibres, such as the lumbar extensors, are often trained using lighter loads and higher repetition ranges. However, literature suggests that similar strength adaptations can be attained by the use of both heavier- (HL) and lighter-load (LL) resistance training across a number of appendicular muscle groups. Furthermore, LL resistance exercise to momentary failure might result in greater discomfort. The aims of the present study were to compare strength adaptations, as well as perceptual responses of effort (RPE-E) and discomfort (RPE-D), to isolated lumbar extension (ILEX) exercise using HL (80% of maximum voluntary contraction; MVC) and LL (50% MVC) in healthy males and females. Twenty-six participants ( = 14 males, = 12 females) were divided in to sex counter-balanced HL (23 ± 5 years; 172.3 ± 9.8 cm; 71.0 ± 13.1 kg) and LL (22 ± 2 years; 175.3 ± 6.3 cm; 72.8 ± 9.5 kg) resistance training groups. All participants performed a single set of dynamic ILEX exercise 1 day/week for 6 weeks using either 80% (HL) or 50% (LL) of their MVC to momentary failure. Analyses revealed significant pre- to post-intervention increases in isometric strength for both HL and LL, with no significant between-group differences (  > 0.05). Changes in strength index (area under torque curves) were 2,891 Nm degrees 95% CIs [1,612-4,169] and 2,865 Nm degrees 95% CIs [1,587-4,144] for HL and LL respectively. Changes in MVC were 51.7 Nm 95% CIs [24.4-79.1] and 46.0 Nm 95% CIs [18.6-73.3] for HL and LL respectively. Mean repetitions per set, total training time and discomfort were all significantly higher for LL compared to HL (26 ± 8 vs. 8 ± 3 repetitions, 158.5 ± 47 vs. 50.5 ± 15 s, and 7.8 ± 1.8 vs. 4.8 ± 2.5, respectively; all  
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.6001