Laser Thermochemical High-Contrast Recording on Thin Metal Films

Laser-induced thermochemical recording of nano- and microsized structures on thin films has attracted intense interest over the last few decades due to essential applications in the photonics industry. Nevertheless, the relationship between the laser parameters and the properties of the formed oxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-12, Vol.11 (1), p.67
Hauptverfasser: Shakhno, Elena A, Nguyen, Quang D, Sinev, Dmitry A, Matvienko, Elizaveta V, Zakoldaev, Roman A, Veiko, Vadim P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laser-induced thermochemical recording of nano- and microsized structures on thin films has attracted intense interest over the last few decades due to essential applications in the photonics industry. Nevertheless, the relationship between the laser parameters and the properties of the formed oxide structures, both geometrical and optical, is still implicit. In this work, direct laser interference patterning of the titanium (Ti) film in the oxidative regime was applied to form submicron periodical structures. Depending on the number of laser pulses, the regime of high contrast structures recording was observed with the maximum achievable thickness of the oxide layer. The investigation revealed high transmittance of the formed oxide layers, i.e., the contrast of recorded structures reached up to 90% in the visible range. To analyze the experimental results obtained, a theoretical model was developed based on calculations of the oxide formation dynamics. The model operates on Wagner oxidation law and the corresponding optical properties of the oxide-metal-glass substrate system changing nonlinearly after each pulse. A good agreement of the experimental results with the modeling estimations allowed us to extend the model application to other metals, specifically to those with optically transparent oxides, such as zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), and tantalum (Ta). The performed analysis highlighted the importance of choosing the correct laser parameters due to the complexity and nonlinearity of optical, thermal, and chemical processes in the metal film during its laser-induced oxidation in the air. The developed model allowed selecting the suitable temporal-energetic regimes and predicting the optical characteristics of the structures formed with an accuracy of 10%. The results are promising in terms of their implementation in the photonics industry for the production of optical converters.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11010067