Convergence analysis for variational inequalities and fixed point problems in reflexive Banach spaces

In this paper, using a Bregman distance technique, we introduce a new single projection process for approximating a common element in the set of solutions of variational inequalities involving a pseudo-monotone operator and the set of common fixed points of a finite family of Bregman quasi-nonexpans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2021-03, Vol.2021 (1), p.1-28, Article 44
Hauptverfasser: Jolaoso, Lateef Olakunle, Shehu, Yekini, Cho, Yeol Je
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, using a Bregman distance technique, we introduce a new single projection process for approximating a common element in the set of solutions of variational inequalities involving a pseudo-monotone operator and the set of common fixed points of a finite family of Bregman quasi-nonexpansive mappings in a real reflexive Banach space. The stepsize of our algorithm is determined by a self-adaptive method, and we prove a strong convergence result under certain mild conditions. We further give some applications of our result to a generalized Nash equilibrium problem and bandwidth allocation problems. We also provide some numerical experiments to illustrate the performance of our proposed algorithm using various convex functions and compare this algorithm with other algorithms in the literature.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-021-02570-6