Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube

The flutter of a composite wing reinforced with functionally graded carbon nanotubes (CNTs) has been investigated. A rectangular plate models a supersonic wing with cantilever boundary conditions. To determine displacement fields of a moderately thick plate, shear deformation theory is used. Using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Curved and layered structures 2024-01, Vol.11 (1), p.324-36
Hauptverfasser: Mohammed, Aseel J., Kadhom, Hatam K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flutter of a composite wing reinforced with functionally graded carbon nanotubes (CNTs) has been investigated. A rectangular plate models a supersonic wing with cantilever boundary conditions. To determine displacement fields of a moderately thick plate, shear deformation theory is used. Using the Hamilton principle, a first-order piston theory was used to simulate supersonic airflow. This study examines four types of CNT thickness. Also, four different CNT distribution patterns are investigated. In a two-layer asymmetric composite, the effects of patch mass, mass distribution, fiber orientation angle, and distribution of CNTs were examined. Moreover, the results are compared and verified with other studies. A greater mass ratio led to a smaller flutter boundary, while a longer added mass increased the flutter boundary. A variation in the distribution pattern in CNT fiber orientation results in a distinct behavior of the flutter boundary for asymmetric composites with increasing orientation angles. The artificial neural network is utilized to predict the damping ratio, and the results showed great accuracy compared to the study results. Hyperparameter tuning is employed for better optimizing the predictive models.
ISSN:2353-7396
2353-7396
DOI:10.1515/cls-2022-0218