A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator

Thermoelectric generation technology is considered to be one of the viable methods to convert waste heat energy directly into electricity. The utilization of this technology has been impeded due to low energy conversion efficiency. This paper aims to improve the energy conversion efficiency of the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-09, Vol.13 (17), p.4531
Hauptverfasser: Kanagaraj, N., Rezk, Hegazy, Gomaa, Mohamed R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermoelectric generation technology is considered to be one of the viable methods to convert waste heat energy directly into electricity. The utilization of this technology has been impeded due to low energy conversion efficiency. This paper aims to improve the energy conversion efficiency of the thermoelectric generator (TEG) model with a novel maximum power point tracking (MPPT) technique. A variable fractional order fuzzy logic controller (VFOFLC)-based MPPT technique is proposed in the present work in which the operating point of the TEG is moved quickly towards an optimal position to increase the energy harvesting. The fraction order term α, introduced in the MPPT algorithm, will expand or contract the input domain of the fuzzy logic controller (FLC to shorten the tracking time and maintain a steady-state output around the maximum power point (MPP). The performance of the proposed MPPT technique was verified with the TEG model by simulation using MATLAB /SIMULINK software. Then, the overall performance of the VFOFLC-based MPPT technique was analyzed and compared with Perturb and observe (P&O) and incremental resistance (INR)-based MPPT techniques. The obtained results confirm that the proposed MPPT technique can improve the energy conversion efficiency of the TEG by harvesting the maximum power within a shorter time and maintaining a steady-state output when compared to other techniques.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13174531