Explicit iteration and unique solution for $ \phi $-Hilfer type fractional Langevin equations

This paper proves that the monotone iterative method is an effective method to find the approximate solution of fractional nonlinear Langevin equation involving $ \phi $-Hilfer fractional derivative with multi-point boundary conditions. First, we apply a approach based on the properties of the Mitta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022, Vol.7 (3), p.3456-3476
Hauptverfasser: Saeed, Abdulkafi M., Almalahi, Mohammed A., Abdo, Mohammed S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proves that the monotone iterative method is an effective method to find the approximate solution of fractional nonlinear Langevin equation involving $ \phi $-Hilfer fractional derivative with multi-point boundary conditions. First, we apply a approach based on the properties of the Mittag-Leffler function to derive the formula of explicit solutions for the proposed problem. Next, by using the fixed point technique and some properties of Mittag-Leffler functions, we establish the sufficient conditions of existence of a unique solution for the considered problem. Moreover, we discuss the lower and upper explicit monotone iterative sequences that converge to the extremal solution by using the monotone iterative method. Finally, we construct a pertinent example that includes some graphics to show the applicability of our results.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022192