Human-computer interaction based on background knowledge and emotion certainty
Aiming at the problems of lack of background knowledge and the inconsistent response of robots in the current human-computer interaction system, we proposed a human-computer interaction model based on a knowledge graph ripple network. The model simulated the natural human communication process to re...
Gespeichert in:
Veröffentlicht in: | PeerJ. Computer science 2023-05, Vol.9, p.e1418-e1418, Article e1418 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the problems of lack of background knowledge and the inconsistent response of robots in the current human-computer interaction system, we proposed a human-computer interaction model based on a knowledge graph ripple network. The model simulated the natural human communication process to realize a more natural and intelligent human-computer interaction system. This study had three contributions: first, the affective friendliness of human-computer interaction was obtained by calculating the affective evaluation value and the emotional measurement of human-computer interaction. Then, the external knowledge graph was introduced as the background knowledge of the robot, and the conversation entity was embedded into the ripple network of the knowledge graph to obtain the potential entity content of interest of the participant. Finally, the robot replies based on emotional friendliness and content friendliness. The experimental results showed that, compared with the comparison models, the emotional friendliness and coherence of robots with background knowledge and emotional measurement effectively improve the response accuracy by 5.5% at least during human-computer interaction. |
---|---|
ISSN: | 2376-5992 2376-5992 |
DOI: | 10.7717/peerj-cs.1418 |