Pyramid Inter-Attention for High Dynamic Range Imaging

This paper proposes a novel approach to high-dynamic-range (HDR) imaging of dynamic scenes to eliminate ghosting artifacts in HDR images when in the presence of severe misalignment (large object or camera motion) in input low-dynamic-range (LDR) images. Recent non-flow-based methods suffer from ghos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5102
Hauptverfasser: Choi, Sungil, Cho, Jaehoon, Song, Wonil, Choe, Jihwan, Yoo, Jisung, Sohn, Kwanghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel approach to high-dynamic-range (HDR) imaging of dynamic scenes to eliminate ghosting artifacts in HDR images when in the presence of severe misalignment (large object or camera motion) in input low-dynamic-range (LDR) images. Recent non-flow-based methods suffer from ghosting artifacts in the presence of large object motion. Flow-based methods face the same issue since their optical flow algorithms yield huge alignment errors. To eliminate ghosting artifacts, we propose a simple yet effective alignment network for solving the misalignment. The proposed pyramid inter-attention module (PIAM) performs alignment of LDR features by leveraging inter-attention maps. Additionally, to boost the representation of aligned features in the merging process, we propose a dual excitation block (DEB) that recalibrates each feature both spatially and channel-wise. Exhaustive experimental results demonstrate the effectiveness of the proposed PIAM and DEB, achieving state-of-the-art performance in terms of producing ghost-free HDR images.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20185102