Stability and Bifurcation Analysis in a Discrete Predator–Prey System of Leslie Type with Radio-Dependent Simplified Holling Type IV Functional Response

In this paper, we use a semi-discretization method to consider the predator–prey model of Leslie type with ratio-dependent simplified Holling type IV functional response. First, we discuss the existence and stability of the positive fixed point in total parameter space. Subsequently, through using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-06, Vol.12 (12), p.1803
Hauptverfasser: Lv, Luyao, Li, Xianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we use a semi-discretization method to consider the predator–prey model of Leslie type with ratio-dependent simplified Holling type IV functional response. First, we discuss the existence and stability of the positive fixed point in total parameter space. Subsequently, through using the central manifold theorem and bifurcation theory, we obtain sufficient conditions for the flip bifurcation and Neimark–Sacker bifurcation of this system to occur. Finally, the numerical simulations illustrate the existence of Neimark–Sacker bifurcation and obtain some new dynamical phenomena of the system—the existence of a limit cycle. Corresponding biological meanings are also formulated.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12121803