Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball

Solvability issues of four boundary value problems for a nonlocal biharmonic equation in the unit ball are investigated. Dirichlet, Neumann, Navier and Riquier–Neumann boundary value problems are studied. For the problems under consideration, existence and uniqueness theorems are proved. Necessary a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-04, Vol.10 (7), p.1158
Hauptverfasser: Karachik, Valery, Turmetov, Batirkhan, Yuan, Hongfen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solvability issues of four boundary value problems for a nonlocal biharmonic equation in the unit ball are investigated. Dirichlet, Neumann, Navier and Riquier–Neumann boundary value problems are studied. For the problems under consideration, existence and uniqueness theorems are proved. Necessary and sufficient conditions for the solvability of all problems are obtained and an integral representations of solutions are given in terms of the corresponding Green’s functions.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10071158