Static analysis of box-girder bridge under the influence of Indian railway vehicle loading using ANSYS finite element model

The box-girder bridge has recently gained a lot of popularity because of its serviceability, stability, and structural efficiency. The box-girder bridge also has a lower structural weight than any other type of bridge. However, the analysis of such a bridge is too complex and challenging for the des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Bridge Engineering 2022-12, Vol.3 (1), p.25-16, Article 25
Hauptverfasser: Shaikh, Mohammad Farhan, Nallasivam, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The box-girder bridge has recently gained a lot of popularity because of its serviceability, stability, and structural efficiency. The box-girder bridge also has a lower structural weight than any other type of bridge. However, the analysis of such a bridge is too complex and challenging for the designers. This paper offers a modelling process for the study of a box- girder bridge with a ballastless sub-track system using the finite element method and evaluates the different static response characteristics of the bridge when it is loaded according to Indian Railway standards. The modelling and the evaluation of the 3D model of the bridge have been done using non-closed form finite element method (FEM) based ANSYS software and loadings have been applied symmetrically and un- symmetrically. Static analysis is carried out. The model has been simulated, and the resultants of deflection and stresses have been determined, taking into account the effect of different combinations of loading from the Indian Railways. The present modelling process is applied to analyze the box-girder bridge for 5 spans of 32 m each. For analysis of any box-girder bridge, though, researchers can use the modelling process described above.
ISSN:2662-5407
2662-5407
DOI:10.1186/s43251-022-00076-9