Graphene-Based Full-Duplex Antenna for Future Generation Communication in THz Frequency Range

A proximity-coupled graphene patch-based full-duplex antenna is proposed for terahertz (THz) applications. The antenna provides a 10 dB impedance bandwidth of 6.06% (1.76 − 1.87 THz). The input ports of the proposed design are isolated from each other by −25 dB. The aspect ratio of the graphene-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Computer Networks and Communications 2023-04, Vol.2023, p.1-7
Hauptverfasser: Syed, Avez, Almalki, Mansour H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A proximity-coupled graphene patch-based full-duplex antenna is proposed for terahertz (THz) applications. The antenna provides a 10 dB impedance bandwidth of 6.06% (1.76 − 1.87 THz). The input ports of the proposed design are isolated from each other by −25 dB. The aspect ratio of the graphene-based radiating patch and the physical parameters of the antenna is selected for obtaining the single-mode operation. The dimensions (length and width of graphene) of the proposed antenna have been opted to operate in two higher-order orthogonal modes, and these modes remain intrinsically isolated. The utilization of the graphene material provides flexibility in tuning the antenna response. Graphene-based patch exhibits good electrical conductivity, electrical conductance controllability, and plasmon properties. The graphene-based antennas perform better than their metallic counterparts, especially in the THz frequency range. The radiation properties of the graphene material are more prominent due to no-ohmic losses. Moreover, its chemical potential may be altered by applying a bias voltage to its surface conductivity, which modifies the surface impedance value of graphene. Therefore, with a small footprint, graphene acts as an excellent radiator at extremely high frequencies.
ISSN:2090-7141
2090-715X
DOI:10.1155/2023/9285354