Supercommuting maps on unital algebras with idempotents

Let $ \mathcal{A} $ be a unital algebra with nontrivial idempotents. We considered $ \mathcal{A} $ as a superalgebra according to Ghahramani and Zadeh's method. We provided a description of supercommuting maps on $ \mathcal{A} $. As a consequence, we gave a description of supercommuting maps on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2024-01, Vol.9 (9), p.24636-24653
Hauptverfasser: Luo, Yingyu, Wang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $ \mathcal{A} $ be a unital algebra with nontrivial idempotents. We considered $ \mathcal{A} $ as a superalgebra according to Ghahramani and Zadeh's method. We provided a description of supercommuting maps on $ \mathcal{A} $. As a consequence, we gave a description of supercommuting maps on matrix algebras, which is different from the result on commuting maps of matrix algebras. Finally, we proved that every supercommuting map on triangular algebras is a commuting map.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20241200