Supercommuting maps on unital algebras with idempotents
Let $ \mathcal{A} $ be a unital algebra with nontrivial idempotents. We considered $ \mathcal{A} $ as a superalgebra according to Ghahramani and Zadeh's method. We provided a description of supercommuting maps on $ \mathcal{A} $. As a consequence, we gave a description of supercommuting maps on...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2024-01, Vol.9 (9), p.24636-24653 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $ \mathcal{A} $ be a unital algebra with nontrivial idempotents. We considered $ \mathcal{A} $ as a superalgebra according to Ghahramani and Zadeh's method. We provided a description of supercommuting maps on $ \mathcal{A} $. As a consequence, we gave a description of supercommuting maps on matrix algebras, which is different from the result on commuting maps of matrix algebras. Finally, we proved that every supercommuting map on triangular algebras is a commuting map. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20241200 |