Kinetics and Optimization Studies of Controlled 5‑Fluorouracil Release from Graphene Oxide Incorporated Vegetable Oil-Based Polyurethane Composite Film

The current study focuses on investigating the potential of produced graphene oxide (GO)/oil-based polyurethane composite films as a drug carrier for 5-fluorouracil (5-FU). Polyurethane was synthesized starting from blends of castor oil and sunflower oil-based glyceride, followed by GO and 5-FU anti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-12, Vol.9 (48), p.47395-47409
Hauptverfasser: Kahraman, Ebru, Hayri-Senel, Tugba, Nasun-Saygili, Gulhayat
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study focuses on investigating the potential of produced graphene oxide (GO)/oil-based polyurethane composite films as a drug carrier for 5-fluorouracil (5-FU). Polyurethane was synthesized starting from blends of castor oil and sunflower oil-based glyceride, followed by GO and 5-FU anticancer drug bearing film production by solution casting. GO/PU composite film samples were characterized by FTIR, TGA and SEM analysis, confirming the PU production and distribution of 5-FU drug at a homogeneous level in GO/PU films. Experimental design studies were carried out to provide insight into the influence of GO incorporation, the amount of loaded drug, and the release medium pH value on 5-FU release behavior. The amount of 5-FU delivered from GO/PU composites displayed a tendency to increase at high GO ratios and high pH values, with the obtained maximum ratio of 91.4%. From release kinetics studies, the pH-sensitive behavior of GO/PU composites was observed following a Higuchi or zero-order kinetic model depending on the GO ratio, indicating a sustained release of the drug. The in vitro cytotoxicity effect of GO/PU film through 5-FU drug release was confirmed against the MCF-7 human breast cancer cell line, while good biocompatibility of the drug-free GO/PU film against the L-929 mouse fibroblast cell line was confirmed via MTT assay test. Overall, the findings support that produced GO/PU composites hold potential for clinical drug delivery applications as a 5-FU drug carrier.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c02247