Uncertain Box-Cox Regression Analysis With Rescaled Least Squares Estimation

Under the uncertain statistical framework by Liu [19] , there is still a lack of an effective fitting method for uncertain linear models with Box-Cox transformation of response variables. For example, for the transformation parameter \lambda , the uncertain least squares estimation will produce a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.84769-84776
Hauptverfasser: Liu, Shiqin, Fang, Liang, Zhou, Zaiying, Hong, Yiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under the uncertain statistical framework by Liu [19] , there is still a lack of an effective fitting method for uncertain linear models with Box-Cox transformation of response variables. For example, for the transformation parameter \lambda , the uncertain least squares estimation will produce a severely low estimation result. In this paper, we propose uncertain Box-Cox regression analysis by utilizing the uncertainty theory to model the imprecise data and applying a generalized Box-Cox transformation indexed by its parameter to validate classic regression assumptions. We use rescaled least squares to estimate unknown parameters and provide an estimate for noises followed by residual analysis for these uncertain Box-Cox regression models. We also give the forecast values and confidence intervals and use a numerical example to demonstrate our methodology. Our work sets a uniformed framework for Box-Cox transformation on the uncertain regression, and extends such regression from linear to nonlinear cases, taking the Johnson-Schumacher growth model as an example.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2989211