The Functional Roles and Regulation of Circular RNAs during Cellular Stresses

Circular RNAs (circRNAs) are a novel class of regulatory RNA involved in many biological, physiological and pathological processes by functioning as a molecular sponge, transcriptional/epigenetic/splicing regulator, modulator of protein–protein interactions, and a template for encoding proteins. Cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Non-coding RNA 2022-05, Vol.8 (3), p.38
Hauptverfasser: Lee, Yueh-Chun, Wang, Wei-Yu, Lin, Hui-Hsuan, Huang, Yi-Ren, Lin, Ya-Chi, Hsiao, Kuei-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Circular RNAs (circRNAs) are a novel class of regulatory RNA involved in many biological, physiological and pathological processes by functioning as a molecular sponge, transcriptional/epigenetic/splicing regulator, modulator of protein–protein interactions, and a template for encoding proteins. Cells are constantly dealing with stimuli from the microenvironment, and proper responses rely on both the precise control of gene expression networks and protein–protein interactions at the molecular level. The critical roles of circRNAs in the regulation of these processes have been heavily studied in the past decades. However, how the microenvironmental stimulation controls the circRNA biogenesis, cellular shuttling, translation efficiency and degradation globally and/or individually remains largely uncharacterized. In this review, how the impact of major microenvironmental stresses on the known transcription factors, splicing modulators and epitranscriptomic regulators, and thereby how they may contribute to the regulation of circRNAs, is discussed. These lines of evidence will provide new insight into how the biogenesis and functions of circRNA can be precisely controlled and targeted for treating human diseases.
ISSN:2311-553X
2311-553X
DOI:10.3390/ncrna8030038