A High-Voltage Energy-Harvesting Interface for Irregular Kinetic Energy Harvesting in IoT Systems with 1365% Improvement Using All-NMOS Power Switches and Ultra-low Quiescent Current Controller

An energy-harvesting interface for kinetic energy harvesting from high-voltage piezoelectric and triboelectric generators is proposed in this paper. Unlike the conventional kinetic energy-harvesting interfaces optimized for continuous sinusoidal input, the proposed harvesting interface can efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-08, Vol.19 (17), p.3685
Hauptverfasser: Saif, Hassan, Khan, Muhammad Bilawal, Lee, Jongmin, Lee, Kyoungho, Lee, Yoonmyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An energy-harvesting interface for kinetic energy harvesting from high-voltage piezoelectric and triboelectric generators is proposed in this paper. Unlike the conventional kinetic energy-harvesting interfaces optimized for continuous sinusoidal input, the proposed harvesting interface can efficiently handle irregular and random high voltage energy inputs. An N-type mosfet (NMOS)-only power stage design is introduced to simplify power switch drivers and minimize conduction loss. Controller active mode power is also reduced by introducing a new voltage peak detector. For efficient operation with potentially long intervals between random kinetic energy inputs, standby power consumption is minimized by monitoring the input with a 43 pW wake-up controller and power-gating all other circuits during the standby intervals. The proposed harvesting interface can harvest energy from a wide range of energy inputs, 10 s of nJ to 10 s of µJ energy/pulse, with an input voltage range of 5-200 V and an output range of 2.4-4 V under discontinuous as well as continuous excitation. The proposed interface is examined in two scenarios, with integrated power stage devices (maximum input 45 V) and with discrete power stage devices (maximum input 200 V), and the harvesting efficiency is improved by up to 600% and 1350%, respectively, compared to the case when harvesting is performed with a full bridge rectifier.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19173685