The Greater Proportion of Born-Light Progeny from Sows Mated in Summer Contributes to Increased Carcass Fatness Observed in Spring
The backfat of pig carcasses is greater in spring than summer in Australia. The unexplained seasonal variation in carcass backfat creates complications for pig producers in supplying consistent lean carcasses. As a novel explanation, we hypothesised that the increased carcass fatness in spring was d...
Gespeichert in:
Veröffentlicht in: | Animals (Basel) 2020-11, Vol.10 (11), p.2080 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The backfat of pig carcasses is greater in spring than summer in Australia. The unexplained seasonal variation in carcass backfat creates complications for pig producers in supplying consistent lean carcasses. As a novel explanation, we hypothesised that the increased carcass fatness in spring was due to a greater percentage of born-light progeny from sows that were mated in summer and experienced hot conditions during early gestation. The first part of our experiment compared the birth weight of piglets born to the sows mated in summer (February, the Southern Hemisphere) with those born to sows mated in autumn (May; the Southern Hemisphere), and the second part of the experiment compared the growth performance and carcass fatness of the progeny that were stratified as born-light (0.7–1.1 kg) and born-normal (1.3–1.7 kg) from the sows mated in these two seasons. The results showed that the sows mated in summer experienced hotter conditions during early gestation as evidenced by an increased respiration rate and rectal temperature, compared with those mated in autumn. The sows mated in summer had a greater proportion of piglets that were born ≤1.1 kg (24.2% vs. 15.8%, p < 0.001), lower average piglet birth weight (1.39 kg vs. 1.52 kg, p < 0.001), lower total litter weights (18.9 kg vs. 19.5 kg, p = 0.044) and lower average placental weight (0.26 vs. 0.31 kg, p = 0.011) than those mated in autumn, although litter sizes were similar. Feed intake and growth rate of progeny from 14 weeks of age to slaughter (101 kg live weight) were greater for the born-normal than born-light pigs within the progeny from sows mated in autumn, but there was no difference between the born-light and normal progeny from sows mated in summer, as evidenced by the interaction between piglet birth weight and sow mating season (Both p < 0.05). Only the born-light piglets from the sows mated in summer had a greater backfat thickness and loin fat% than the progeny from the sows mated in autumn, as evidenced by a trend of interaction between piglet birth weight and sow mating season (Both p < 0.10). In conclusion, the increased proportion of born-light piglets (0.7–1.1 kg range) from the sows mated in summer contributed to the increased carcass fatness observed in spring. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani10112080 |