Hygrothermal Behavior of Earth-Based Materials: Experimental and Numerical Analysis
Bio-based building materials such as earth bricks are attracting renewed interest throughout the world due to their thermal and environmental properties. In this work, a numerical study of the hygrothermal behavior of building walls consist of compressed earth bricks (CEB) and stabilized earth brick...
Gespeichert in:
Veröffentlicht in: | MATEC web of conferences 2020, Vol.330, p.1030 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bio-based building materials such as earth bricks are attracting renewed interest throughout the world due to their thermal and environmental properties.
In this work, a numerical study of the hygrothermal behavior of building walls consist of compressed earth bricks (CEB) and stabilized earth bricks (SEB) was performed. A two-dimensional Luikov model for evaluating the temperature and the moisture migration in porous building materials was proposed. The coupled heat and moisture transfer problem was modeled. The governing equations of a mathematical model were solved numerically with the finite difference method. Input parameters in the model and their dependency on stabilizers content were determined by laboratory experiments.
In order to specify the effect of chemical stabilization on the heat and mass transfer within studied materials, average moisture content and temperature were presented as a function of time. Results show that the addition of chemical stabilizers enhances the heat transfer through the earthen materials and reduces their water vapor permeability. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/202033001030 |