Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms
For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is desi...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2013-01, Vol.6 (1), p.1-26 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is desirable for several reasons. This article investigates a nine-node DC grid connecting three northern European countries — namely UK, The Netherlands and Germany. The power-flow control inside the multi-terminal DC grid based on voltage-source converters is achieved through a novel method, called distributed voltage control (DVC). In this method, an optimal power flow (OPF) is solved in order to minimize the transmission losses in the network. The main contribution of the paper is the utilization of a genetic algorithm (GA) to solve the OPF problem while maintaining an N-1 security constraint. After describing main DC network component models, several case studies illustrate the dynamic behavior of the proposed control method. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en6010001 |