Targeting multi-loop integrals with neural networks

Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics 2022-04, Vol.12 (4), p.129, Article 129
Hauptverfasser: Winterhalder, Ramon, Magerya, Vitaly, Villa, Emilio, Jones, Stephen, Kerner, Matthias, Butter, Anja, Heinrich, Gudrun, Plehn, Tilman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.
ISSN:2542-4653
2542-4653
DOI:10.21468/SciPostPhys.12.4.129