Targeting multi-loop integrals with neural networks
Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2022-04, Vol.12 (4), p.129, Article 129 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerical evaluations of Feynman integrals
often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.12.4.129 |