YOLOv5 with ConvMixer Prediction Heads for Precise Object Detection in Drone Imagery

The potency of object detection techniques using Unmanned Aerial Vehicles (UAVs) is unprecedented due to their mobility. This potency has stimulated the use of UAVs with object detection functionality in numerous crucial real-life applications. Additionally, more efficient and accurate object detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-11, Vol.22 (21), p.8424
Hauptverfasser: Baidya, Ranjai, Jeong, Heon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potency of object detection techniques using Unmanned Aerial Vehicles (UAVs) is unprecedented due to their mobility. This potency has stimulated the use of UAVs with object detection functionality in numerous crucial real-life applications. Additionally, more efficient and accurate object detection techniques are being researched and developed for usage in UAV applications. However, object detection in UAVs presents challenges that are not common to general object detection. First, as UAVs fly at varying altitudes, the objects imaged via UAVs vary vastly in size, making the task at hand more challenging. Second due to the motion of the UAVs, there could be a presence of blur in the captured images. To deal with these challenges, we present a You Only Look Once v5 (YOLOv5)-like architecture with ConvMixers in its prediction heads and an additional prediction head to deal with minutely-small objects. The proposed architecture has been trained and tested on the VisDrone 2021 dataset, and the acquired results are comparable with the existing state-of-the-art methods.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22218424