Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses
A key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the l...
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-10, Vol.4 (1), p.1183-1183, Article 1183 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the lack of muscle wasting disease medication. To this end, we adapted our recently described 24-well plate 3D bioprinting platform with a printhead cooling system to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Mini skeletal muscle models develop within a week exhibiting contractile, striated myofibers aligned between two attachment posts. As an in vitro exercise model, repeated high impact stimulation of contractions for 3 h by a custom-made electrical pulse stimulation (EPS) system for 24-well plates induced
interleukin-6
myokine expression and Akt hypertrophy pathway activation. Furthermore, the known muscle stimulators caffeine and Tirasemtiv acutely increase EPS-induced contractile force of the models. This validated new human muscle MPS will benefit development of drugs against muscle wasting diseases. Moreover, our Matrigel 3D bioprinting platform will allow engineering of non-self-organizing complex human 3D MPS.
Alave-Furrer et al adapted their recently-developed 3D bioprinting platform to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Their bioprinting platform recapitulated aspects of exercise and pharmacological responses and thus could aid the engineering of more complex 3D microphysiological systems. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-021-02691-0 |