Global solvability and boundedness to a attraction–repulsion model with logistic source

In this paper, we deal with an attraction–repulsion model with a logistic source as follows: { u t = Δ u − χ ∇ ⋅ ( u ∇ v ) + ξ ∇ ⋅ ( u ∇ w ) + μ u q ( 1 − u ) in  Q , v t = Δ v − α 1 v + β 1 u in  Q , w t = Δ w − α 2 w + β 2 u in  Q , where Q = Ω × R + , Ω ⊂ R 3 is a bounded domain. We mainly focus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2024-07, Vol.2024 (1), p.94-16, Article 94
1. Verfasser: Zhang, Danqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deal with an attraction–repulsion model with a logistic source as follows: { u t = Δ u − χ ∇ ⋅ ( u ∇ v ) + ξ ∇ ⋅ ( u ∇ w ) + μ u q ( 1 − u ) in  Q , v t = Δ v − α 1 v + β 1 u in  Q , w t = Δ w − α 2 w + β 2 u in  Q , where Q = Ω × R + , Ω ⊂ R 3 is a bounded domain. We mainly focus on the influence of logistic damping on the global solvability of this model. In dimension 2, q can be equal to 1 (Math. Methods Appl. Sci. 39(2):289–301, 2016 ). In dimension 3, we derive that the problem admits a global bounded solution when q > 8 7 . In fact, we transfer the difficulty of estimation to the logistic term through iterative methods, thus, compared to the results in (J. Math. Anal. Appl. 2:448 2017 ; Z. Angew. Math. Phys. 73(2):1–25 2022 ) in dimension 3, our results do not require any restrictions on the coefficients.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-024-01904-9