Development of Gas Sensor Array for Methane Reforming Process Monitoring

The article presents a new method of monitoring and assessing the course of the dry methane reforming process with the use of a gas sensor array. Nine commercially available TGS chemical gas sensors were used to construct the array (seven metal oxide sensors and two electrochemical ones). Principal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (15), p.4983
Hauptverfasser: Dobrzyniewski, Dominik, Szulczyński, Bartosz, Dymerski, Tomasz, Gębicki, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article presents a new method of monitoring and assessing the course of the dry methane reforming process with the use of a gas sensor array. Nine commercially available TGS chemical gas sensors were used to construct the array (seven metal oxide sensors and two electrochemical ones). Principal Component Regression (PCR) was used as a calibration method. The developed PCR models were used to determine the quantitative parameters of the methane reforming process: Inlet Molar Ratio (IMR) in the range 0.6–1.5, Outlet Molar Ratio (OMR) in the range 0.6–1.0, and Methane Conversion Level (MCL) in the range 80–95%. The tests were performed on model gas mixtures. The mean error in determining the IMR is 0.096 for the range of molar ratios 0.6–1.5. However, in the case of the process range (0.9–1.1), this error is 0.065, which is about 6.5% of the measured value. For the OMR, an average error of 0.008 was obtained (which gives about 0.8% of the measured value), while for the MCL, the average error was 0.8%. Obtained results are very promising. They show that the use of an array of non-selective chemical sensors together with an appropriately selected mathematical model can be used in the monitoring of commonly used industrial processes.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21154983