Different dimensional fractional-order discrete chaotic systems based on the Caputo h-difference discrete operator: dynamics, control, and synchronization

The paper investigates control and synchronization of fractional-order maps described by the Caputo h -difference operator. At first, two new fractional maps are introduced, i.e., the Two-Dimensional Fractional-order Lorenz Discrete System (2D-FoLDS) and Three-Dimensional Fractional-order Wang Discr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-11, Vol.2020 (1), p.1-15, Article 624
Hauptverfasser: Talbi, Ibtissem, Ouannas, Adel, Khennaoui, Amina-Aicha, Berkane, Abdelhak, Batiha, Iqbal M., Grassi, Giuseppe, Pham, Viet-Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper investigates control and synchronization of fractional-order maps described by the Caputo h -difference operator. At first, two new fractional maps are introduced, i.e., the Two-Dimensional Fractional-order Lorenz Discrete System (2D-FoLDS) and Three-Dimensional Fractional-order Wang Discrete System (3D-FoWDS). Then, some novel theorems based on the Lyapunov approach are proved, with the aim of controlling and synchronizing the map dynamics. In particular, a new hybrid scheme is proposed, which enables synchronization to be achieved between a master system based on a 2D-FoLDS and a slave system based on a 3D-FoWDS. Simulation results are reported to highlight the effectiveness of the conceived approach.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-03086-x