The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis

Panax notoginseng, a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng, with a genome size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant communications 2021-01, Vol.2 (1), p.100113-100113, Article 100113
Hauptverfasser: Jiang, Zhouqian, Tu, Lichan, Yang, Weifei, Zhang, Yifeng, Hu, Tianyuan, Ma, Baowei, Lu, Yun, Cui, Xiuming, Gao, Jie, Wu, Xiaoyi, Tong, Yuru, Zhou, Jiawei, Song, Yadi, Liu, Yuan, Liu, Nan, Huang, Luqi, Gao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Panax notoginseng, a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng, with a genome size up to 2.66 Gb and a contig N50 of 1.12 Mb, produced with third-generation PacBio sequencing technology. This is the first chromosome-level genome assembly for the genus Panax. Through genome evolution analysis, we explored phylogenetic and whole-genome duplication events and examined their impact on saponin biosynthesis. We performed a detailed transcriptional analysis of P. notoginseng and explored gene-level mechanisms that regulate the formation of characteristic tubercles. Next, we studied the biosynthesis and regulation of saponins at temporal and spatial levels. We combined multi-omics data to identify genes that encode key enzymes in the P. notoginseng terpenoid biosynthetic pathway. Finally, we identified five glycosyltransferase genes whose products catalyzed the formation of different ginsenosides in P. notoginseng. The genetic information obtained in this study provides a resource for further exploration of the growth characteristics, cultivation, breeding, and saponin biosynthesis of P. notoginseng. This study uses PacBio sequencing and Hi-C-assisted assembly technology to construct a high-quality, chromosome-level reference genome for the famous medicinal plant Panax notoginseng. Furthermore, this study investigates the biosynthesis of saponins in P. notoginseng and characterizes key UGT enzymes.
ISSN:2590-3462
2590-3462
DOI:10.1016/j.xplc.2020.100113