Modeling the Scaling of Short‐Duration Precipitation Extremes With Temperature

The Clausius‐Clapeyron (CC) relation expresses the exponential increase in the moisture‐holding capacity of air of approximately 7%/°C. Earlier studies show that extreme hourly precipitation increases with daily mean temperature, consistent with the CC relation. Recent studies at specific locations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and space science (Hoboken, N.J.) N.J.), 2019-10, Vol.6 (10), p.2031-2041
Hauptverfasser: Van de Vyver, Hans, Van Schaeybroeck, Bert, De Troch, Rozemien, Hamdi, Rafiq, Termonia, Piet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Clausius‐Clapeyron (CC) relation expresses the exponential increase in the moisture‐holding capacity of air of approximately 7%/°C. Earlier studies show that extreme hourly precipitation increases with daily mean temperature, consistent with the CC relation. Recent studies at specific locations found that for temperatures higher than around 12 °C, hourly precipitation extremes scale at rates higher than the CC scaling, a phenomenon that is often referred to as “super‐CC scaling.” These scalings are typically estimated by collecting rainfall data in temperature bins, followed by a linear fit or a visual inspection of the precipitation quantiles in each bin. In this study, a piecewise linear quantile regression model is presented for a more flexible, and robust estimation of the scaling parameters, and their associated uncertainties. Moreover, we use associated information criteria to prove statistically whether or not a pronounced super‐CC scaling exists. The techniques were tested on stochastically simulated data and, when applied to hourly station data across Western Europe and Scandinavia, revealed large uncertainties in the scaling rates. Finally, goodness‐of‐fit measures indicated that the dew point temperature is a better scaling predictor than temperature. Key Points Piecewise linear quantile regression is used to quantify the transition from CC scaling to super‐CC scaling Large uncertainties exist for the scaling rates and change points of observed precipitation extremes Goodness‐of‐fit measures indicate that the dew point temperature is a better scaling predictor than temperature
ISSN:2333-5084
2333-5084
DOI:10.1029/2019EA000665