The Impaired Neurodevelopment of Human Neural Rosettes in HSV-1-Infected Early Brain Organoids

Intrauterine infections during pregnancy by herpes simplex virus (HSV) can cause significant neurodevelopmental deficits in the unborn/newborn, but clinical studies of pathogenesis are challenging, and while animal models can model some aspects of disease, in vitro studies of human neural cells prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2022-11, Vol.11 (22), p.3539
Hauptverfasser: D'Aiuto, Leonardo, Caldwell, Jill K, Wallace, Callen T, Grams, Tristan R, Wesesky, Maribeth A, Wood, Joel A, Watkins, Simon C, Kinchington, Paul R, Bloom, David C, Nimgaonkar, Vishwajit L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intrauterine infections during pregnancy by herpes simplex virus (HSV) can cause significant neurodevelopmental deficits in the unborn/newborn, but clinical studies of pathogenesis are challenging, and while animal models can model some aspects of disease, in vitro studies of human neural cells provide a critical platform for more mechanistic studies. We utilized a reductionist approach to model neurodevelopmental outcomes of HSV-1 infection of neural rosettes, which represent the in vitro equivalent of differentiating neural tubes. Specifically, we employed early-stage brain organoids (ES-organoids) composed of human induced pluripotent stem cells (hiPSCs)-derived neural rosettes to investigate aspects of the potential neuropathological effects induced by the HSV-1 infections on neurodevelopment. To allow for the long-term differentiation of ES-organoids, viral infections were performed in the presence of the antiviral drug acyclovir (ACV). Despite the antiviral treatment, HSV-1 infection caused organizational changes in neural rosettes, loss of structural integrity of infected ES-organoids, and neuronal alterations. The inability of ACV to prevent neurodegeneration was associated with the generation of ACV-resistant mutants during the interaction of HSV-1 with differentiating neural precursor cells (NPCs). This study models the effects of HSV-1 infection on the neuronal differentiation of NPCs and suggests that this environment may allow for accelerated development of ACV-resistance.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells11223539