Corrosion Performance of Engineered Barrier System in Deep Horizontal Drillholes

The disposal of spent nuclear fuel and other high-level radioactive waste in deep horizontal drillholes is an innovative system. Canisters of highly corrosion-resistant nickel-chromium-molybdenum (Ni-Cr-Mo) alloys are specified for the disposal of this nuclear waste. The canisters are emplaced along...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2019-04, Vol.12 (8), p.1491
Hauptverfasser: Payer, Joe H, Finsterle, Stefan, Apps, John A, Muller, Richard A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The disposal of spent nuclear fuel and other high-level radioactive waste in deep horizontal drillholes is an innovative system. Canisters of highly corrosion-resistant nickel-chromium-molybdenum (Ni-Cr-Mo) alloys are specified for the disposal of this nuclear waste. The canisters are emplaced along a steel casing in a horizontal drillhole that is one to three kilometers deep into or below a low-permeability geologic formation. The drillhole is in fully saturated rock with anoxic and reducing pore waters. A time-interval analysis method was used to track the evolution of the environment and to analyze corrosion performance of a representative engineered barrier system (EBS) configuration. In this analysis, the canisters remained perforation-free for tens of thousands of years. The amounts of hydrogen and metal oxides formed as by-products of the metal corrosion process were determined. These by-products are of interest, because both hydrogen and metal oxides can affect the chemical composition of the environment and the transport and sorption behavior of radionuclides and other species. Beneficial attributes that contribute to the extraordinarily long life of the canisters were identified. Several inherent characteristics of the horizontal drillhole disposal system reduced the complexities and uncertainties of the analysis.
ISSN:1996-1073
1996-1073
DOI:10.3390/en12081491